Plotting a 2D heatmap with Matplotlib

Posted on

Question :

Plotting a 2D heatmap with Matplotlib

Using Matplotlib, I want to plot a 2D heat map. My data is an n-by-n Numpy array, each with a value between 0 and 1. So for the (i, j) element of this array, I want to plot a square at the (i, j) coordinate in my heat map, whose color is proportional to the element’s value in the array.

How can I do this?

Answer #1:

The imshow() function with parameters interpolation='nearest' and cmap='hot' should do what you want.

import matplotlib.pyplot as plt
import numpy as np

a = np.random.random((16, 16))
plt.imshow(a, cmap='hot', interpolation='nearest')

enter image description here

Answered By: P. Camilleri

Answer #2:

Seaborn takes care of a lot of the manual work and automatically plots a gradient at the side of the chart etc.

import numpy as np
import seaborn as sns
import matplotlib.pylab as plt

uniform_data = np.random.rand(10, 12)
ax = sns.heatmap(uniform_data, linewidth=0.5)

enter image description here

Or, you can even plot upper / lower left / right triangles of square matrices, for example a correlation matrix which is square and is symmetric, so plotting all values would be redundant anyway.

corr = np.corrcoef(np.random.randn(10, 200))
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
    ax = sns.heatmap(corr, mask=mask, vmax=.3, square=True,  cmap="YlGnBu")

enter image description here

Answered By: PyRsquared

Answer #3:

For a 2d numpy array, simply use imshow() may help you:

import matplotlib.pyplot as plt
import numpy as np

def heatmap2d(arr: np.ndarray):
    plt.imshow(arr, cmap='viridis')

test_array = np.arange(100 * 100).reshape(100, 100)

The heatmap of the example code

This code produces a continuous heatmap.

You can choose another built-in colormap from here.

Answered By: huangbiubiu

Answer #4:

I would use matplotlib’s pcolor/pcolormesh function since it allows nonuniform spacing of the data.

Example taken from matplotlib:

import matplotlib.pyplot as plt
import numpy as np

# generate 2 2d grids for the x & y bounds
y, x = np.meshgrid(np.linspace(-3, 3, 100), np.linspace(-3, 3, 100))

z = (1 - x / 2. + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
# x and y are bounds, so z should be the value *inside* those bounds.
# Therefore, remove the last value from the z array.
z = z[:-1, :-1]
z_min, z_max = -np.abs(z).max(), np.abs(z).max()

fig, ax = plt.subplots()

c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max)
# set the limits of the plot to the limits of the data
ax.axis([x.min(), x.max(), y.min(), y.max()])
fig.colorbar(c, ax=ax)

pcolormesh plot output

Answered By: Erasmus Cedernaes

Answer #5:

Here’s how to do it from a csv:

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata

# Load data from CSV
dat = np.genfromtxt('', delimiter=' ',skip_header=0)
X_dat = dat[:,0]
Y_dat = dat[:,1]
Z_dat = dat[:,2]

# Convert from pandas dataframes to numpy arrays
X, Y, Z, = np.array([]), np.array([]), np.array([])
for i in range(len(X_dat)):
        X = np.append(X, X_dat[i])
        Y = np.append(Y, Y_dat[i])
        Z = np.append(Z, Z_dat[i])

# create x-y points to be used in heatmap
xi = np.linspace(X.min(), X.max(), 1000)
yi = np.linspace(Y.min(), Y.max(), 1000)

# Interpolate for plotting
zi = griddata((X, Y), Z, (xi[None,:], yi[:,None]), method='cubic')

# I control the range of my colorbar by removing data 
# outside of my range of interest
zmin = 3
zmax = 12
zi[(zi<zmin) | (zi>zmax)] = None

# Create the contour plot
CS = plt.contourf(xi, yi, zi, 15,,
                  vmax=zmax, vmin=zmin)

where is in the form

x1 y1 z1
x2 y2 z2
Answered By: kilojoules

Leave a Reply

Your email address will not be published. Required fields are marked *