Question :
I’m new to Python and Matplotlib, I would like to simply apply colormap to an image and write the resulting image, without using axes, labels, titles or anything usually automatically added by matplotlib. Here is what I did:
def make_image(inputname,outputname):
data = mpimg.imread(inputname)[:,:,0]
fig = plt.imshow(data)
fig.set_cmap('hot')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.savefig(outputname)
It successfully removes the axis of the figure, but the figure saved presents a white padding and a frame around the actual image.
How can I remove them (at least the white padding)? Thanks
Answer #1:
I think that the command axis('off')
takes care of one of the problems more succinctly than changing each axis and the border separately. It still leaves the white space around the border however. Adding bbox_inches='tight'
to the savefig
command almost gets you there, you can see in the example below that the white space left is much smaller, but still present.
Note that newer versions of matplotlib may require bbox_inches=0
instead of the string 'tight'
(via @episodeyang and @kadrach)
from numpy import random
import matplotlib.pyplot as plt
data = random.random((5,5))
img = plt.imshow(data, interpolation='nearest')
img.set_cmap('hot')
plt.axis('off')
plt.savefig("test.png", bbox_inches='tight')
Answer #2:
I learned this trick from matehat, here:
import matplotlib.pyplot as plt
import numpy as np
def make_image(data, outputname, size=(1, 1), dpi=80):
fig = plt.figure()
fig.set_size_inches(size)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
plt.set_cmap('hot')
ax.imshow(data, aspect='equal')
plt.savefig(outputname, dpi=dpi)
# data = mpimg.imread(inputname)[:,:,0]
data = np.arange(1,10).reshape((3, 3))
make_image(data, '/tmp/out.png')
yields
Answer #3:
Possible simplest solution:
I simply combined the method described in the question and the method from the answer by Hooked.
fig = plt.imshow(my_data)
plt.axis('off')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.savefig('pict.png', bbox_inches='tight', pad_inches = 0)
After this code there is no whitespaces and no frame.
Answer #4:
No one mentioned imsave
yet, which makes this a one-liner:
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(10000).reshape((100, 100))
plt.imsave("/tmp/foo.png", data, format="png", cmap="hot")
It directly stores the image as it is, i.e. does not add any axes or border/padding.
Answer #5:
You can also specify the extent of the figure to the bbox_inches
argument. This would get rid of the white padding around the figure.
def make_image(inputname,outputname):
data = mpimg.imread(inputname)[:,:,0]
fig = plt.imshow(data)
fig.set_cmap('hot')
ax = fig.gca()
ax.set_axis_off()
ax.autoscale(False)
extent = ax.get_window_extent().transformed(plt.gcf().dpi_scale_trans.inverted())
plt.savefig(outputname, bbox_inches=extent)
Answer #6:
This should remove all padding and borders:
from matplotlib import pyplot as plt
fig = plt.figure()
fig.patch.set_visible(False)
ax = fig.add_subplot(111)
plt.axis('off')
plt.imshow(data)
extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
plt.savefig("../images/test.png", bbox_inches=extent)
Answer #7:
I found that it is all documented…
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.axes.Axes.axis.html#matplotlib.axes.Axes.axis
My codeā¦. “bcK” is a 512×512 image
plt.figure()
plt.imshow(bck)
plt.axis("off") # turns off axes
plt.axis("tight") # gets rid of white border
plt.axis("image") # square up the image instead of filling the "figure" space
plt.show()
Answer #8:
The upvoted answer does not work anymore. To get it to work you need
to manually add an axis set to [0, 0, 1, 1], or remove the patch under figure.
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(5, 5), dpi=20)
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
plt.imshow([[0, 1], [0.5, 0]], interpolation="nearest")
plt.axis('off') # same as: ax.set_axis_off()
plt.savefig("test.png")
Alternatively, you could just remove the patch. You don’t need to add a subplot in order to remove the paddings. This is simplified from Vlady’s answer below
fig = plt.figure(figsize=(5, 5))
fig.patch.set_visible(False) # turn off the patch
plt.imshow([[0, 1], [0.5, 0]], interpolation="nearest")
plt.axis('off')
plt.savefig("test.png", cmap='hot')
This is tested with version 3.0.3
on 2019/06/19. Image see bellow:
A much simpler thing to do is to use pyplot.imsave
. For details, see luator’s answer bellow