Does Python have a ternary conditional operator?

Posted on

Problem :

Is there a ternary conditional operator in Python?

Solution :

You can index into a tuple:

(falseValue, trueValue)[test]

test needs to return True or False.
It might be safer to always implement it as:

(falseValue, trueValue)[test == True]

or you can use the built-in bool() to assure a Boolean value:

(falseValue, trueValue)[bool(<expression>)]

<expression 1> if <condition> else <expression 2>

a = 1
b = 2

1 if a > b else -1 
# Output is -1

1 if a > b else -1 if a < b else 0
# Output is -1

From the documentation:

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C (not x); if C is true, x is evaluated and its value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

New since version 2.5.

An operator for a conditional expression in Python was added in 2006 as part of Python Enhancement Proposal 308. Its form differ from common ?: operator and it’s:

<expression1> if <condition> else <expression2>

which is equivalent to:

if <condition>: <expression1> else: <expression2>

Here is an example:

result = x if a > b else y

Another syntax which can be used (compatible with versions before 2.5):

result = (lambda:y, lambda:x)[a > b]()

where operands are lazily evaluated.

Another way is by indexing a tuple (which isn’t consistent with the conditional operator of most other languages):

result = (y, x)[a > b]

or explicitly constructed dictionary:

result = {True: x, False: y}[a > b]

Another (less reliable), but simpler method is to use and and or operators:

result = (a > b) and x or y

however this won’t work if x would be False.

A possible workaround is to make x and y lists or tuples as in the following:

result = ((a > b) and [x] or [y])[0]


result = ((a > b) and (x,) or (y,))[0]

If you’re working with dictionaries, instead of using a ternary conditional, you can take advantage of get(key, default), for example:

shell = os.environ.get('SHELL', "/bin/sh")

Source: ?: in Python at Wikipedia

Unfortunately, the

(falseValue, trueValue)[test]

solution doesn’t have short-circuit behaviour; thus both falseValue and trueValue are evaluated regardless of the condition. This could be suboptimal or even buggy (i.e. both trueValue and falseValue could be methods and have side effects).

One solution to this would be

(lambda: falseValue, lambda: trueValue)[test]()

(execution delayed until the winner is known ;)), but it introduces inconsistency between callable and non-callable objects. In addition, it doesn’t solve the case when using properties.

And so the story goes – choosing between three mentioned solutions is a trade-off between having the short-circuit feature, using at least Python 2.5 (IMHO, not a problem anymore) and not being prone to “trueValue-evaluates-to-false” errors.

Ternary operator in different programming languages

Here I just try to show some important differences in the ternary operator between a couple of programming languages.

Ternary operator in JavaScript

var a = true ? 1 : 0;
# 1
var b = false ? 1 : 0;
# 0

Ternary operator in Ruby

a = true ? 1 : 0
# 1
b = false ? 1 : 0
# 0

Ternary operator in Scala

val a = true ? 1 | 0
# 1
val b = false ? 1 | 0
# 0

Ternary operator in R programming

a <- if (TRUE) 1 else 0
# 1
b <- if (FALSE) 1 else 0
# 0

Ternary operator in Python

a = 1 if True else 0
# 1
b = 1 if False else 0
# 0

For Python 2.5 and newer there is a specific syntax:

[on_true] if [cond] else [on_false]

In older Pythons a ternary operator is not implemented but it’s possible to simulate it.

cond and on_true or on_false

Though, there is a potential problem, which if cond evaluates to True and on_true evaluates to False then on_false is returned instead of on_true. If you want this behavior the method is OK, otherwise use this:

{True: on_true, False: on_false}[cond is True] # is True, not == True

which can be wrapped by:

def q(cond, on_true, on_false)
    return {True: on_true, False: on_false}[cond is True]

and used this way:

q(cond, on_true, on_false)

It is compatible with all Python versions.

cond and on_true or on_false

Does Python have a ternary conditional operator?

Yes. From the grammar file:

test: or_test ['if' or_test 'else' test] | lambdef

The part of interest is:

or_test ['if' or_test 'else' test]

So, a ternary conditional operation is of the form:

expression1 if expression2 else expression3

expression3 will be lazily evaluated (that is, evaluated only if expression2 is false in a boolean context). And because of the recursive definition, you can chain them indefinitely (though it may considered bad style.)

expression1 if expression2 else expression3 if expression4 else expression5 # and so on

A note on usage:

Note that every if must be followed with an else. People learning list comprehensions and generator expressions may find this to be a difficult lesson to learn – the following will not work, as Python expects a third expression for an else:

[expression1 if expression2 for element in iterable]
#                          ^-- need an else here

which raises a SyntaxError: invalid syntax.
So the above is either an incomplete piece of logic (perhaps the user expects a no-op in the false condition) or what may be intended is to use expression2 as a filter – notes that the following is legal Python:

[expression1 for element in iterable if expression2]

expression2 works as a filter for the list comprehension, and is not a ternary conditional operator.

Alternative syntax for a more narrow case:

You may find it somewhat painful to write the following:

expression1 if expression1 else expression2

expression1 will have to be evaluated twice with the above usage. It can limit redundancy if it is simply a local variable. However, a common and performant Pythonic idiom for this use-case is to use or‘s shortcutting behavior:

expression1 or expression2

which is equivalent in semantics. Note that some style-guides may limit this usage on the grounds of clarity – it does pack a lot of meaning into very little syntax.

As already answered, yes, there is a ternary operator in Python:

<expression 1> if <condition> else <expression 2>

In many cases <expression 1> is also used as Boolean evaluated <condition>. Then you can use short-circuit evaluation.

a = 0
b = 1

# Instead of this:
x = a if a else b
# Evaluates as 'a if bool(a) else b'

# You could use short-circuit evaluation:
x = a or b

One big pro of short-circuit evaluation is the possibility of chaining more than two expressions:

x = a or b or c or d or e

When working with functions it is more different in detail:

# Evaluating functions:
def foo(x):
    print('foo executed')
    return x

def bar(y):
    print('bar executed')
    return y

def blubb(z):
    print('blubb executed')
    return z

# Ternary Operator expression 1 equals to False
print(foo(0) if foo(0) else bar(1))
''' foo and bar are executed once
foo executed
bar executed

# Ternary Operator expression 1 equals to True
print(foo(2) if foo(2) else bar(3))
''' foo is executed twice!
foo executed
foo executed

# Short-circuit evaluation second equals to True
print(foo(0) or bar(1) or blubb(2))
''' blubb is not executed
foo executed
bar executed

# Short-circuit evaluation third equals to True
print(foo(0) or bar(0) or blubb(2))
foo executed
bar executed
blubb executed

# Short-circuit evaluation all equal to False
print(foo(0) or bar(0) or blubb(0))
''' Result is 0 (from blubb(0)) because no value equals to True
foo executed
bar executed
blubb executed

PS: Of course, a short-circuit evaluation is not a ternary operator, but often the ternary is used in cases where the short circuit would be enough. It has a better readability and can be chained.

One of the alternatives to Python’s conditional expression

"yes" if boolean else "no"

is the following:

{True: "yes", False: "no"}[boolean]

which has the following nice extension:

{True: "yes", False: "no", None: "maybe"}[boolean_or_none]

The shortest alternative remains

("no", "yes")[boolean]

which works because issubclass(bool, int).

Careful, though: the alternative to

yes() if boolean else no()

is not

(no(), yes())[boolean]  # bad: BOTH no() and yes() are called


(no, yes)[boolean]()

This works fine as long as no and yes are to be called with exactly the same parameters. If they are not, like in

yes("ok") if boolean else no()  # (1)

or in

yes("ok") if boolean else no("sorry")  # (2)

then a similar alternative either does not exist (1) or is hardly viable (2). (In rare cases, depending on the context, something like

msg = ("sorry", "ok")[boolean]
(no, yes)[boolean](msg)

could make sense.)

Thanks to Radek Rojík for his comment

Simulating the Python ternary operator.

For example

a, b, x, y = 1, 2, 'a greather than b', 'b greater than a'
result = (lambda:y, lambda:x)[a > b]()


'b greater than a'

a if condition else b

Just memorize this pyramid if you have trouble remembering:

  if           else
a                   b 

The ternary conditional operator simply allows testing a condition in a single line replacing the multiline if-else making the code compact.


[on_true] if [expression] else [on_false]

1- Simple Method to use ternary operator:

# Program to demonstrate conditional operator
a, b = 10, 20
# Copy value of a in min if a < b else copy b
min = a if a < b else b
print(min)  # Output: 10

2- Direct Method of using tuples, Dictionary, and lambda:

# Python program to demonstrate ternary operator
a, b = 10, 20
# Use tuple for selecting an item
print( (b, a) [a < b] )
# Use Dictionary for selecting an item
print({True: a, False: b} [a < b])
# lambda is more efficient than above two methods
# because in lambda  we are assure that
# only one expression will be evaluated unlike in
# tuple and Dictionary
print((lambda: b, lambda: a)[a < b]()) # in output you should see three 10

3- Ternary operator can be written as nested if-else:

# Python program to demonstrate nested ternary operator
a, b = 10, 20
print ("Both a and b are equal" if a == b else "a is greater than b"
        if a > b else "b is greater than a")

Above approach can be written as:

# Python program to demonstrate nested ternary operator
a, b = 10, 20
if a != b:
    if a > b:
        print("a is greater than b")
        print("b is greater than a")
    print("Both a and b are equal")
# Output: b is greater than a

Vinko Vrsalovic’s answer is good enough. There is only one more thing:

Note that conditionals are an expression, not a statement. This means you can’t use assignment statements or pass or other statements within a conditional expression

Walrus operator in Python 3.8

After the walrus operator was introduced in Python 3.8, something changed.

(a := 3) if True else (b := 5)

gives a = 3 and b is not defined,

(a := 3) if False else (b := 5)

gives a is not defined and b = 5, and

c = (a := 3) if False else (b := 5)

gives c = 5, a is not defined and b = 5.

Even if this may be ugly, assignments can be done inside conditional expressions after Python 3.8. Anyway, it is still better to use normal if statement instead in this case.

More a tip than an answer (I don’t need to repeat the obvious for the hundredth time), but I sometimes use it as a one-liner shortcut in such constructs:

if conditionX:

, becomes:

print('yes') if conditionX else print('nah')

Some (many 🙂 may frown upon it as unpythonic (even, Ruby-ish :), but I personally find it more natural – i.e., how you’d express it normally, plus a bit more visually appealing in large blocks of code.

You can do this:

[condition] and [expression_1] or [expression_2];


print(number%2 and "odd" or "even")

This would print “odd” if the number is odd or “even” if the number is even.

The result: If condition is true, exp_1 is executed, else exp_2 is executed.

Note: 0, None, False, emptylist, and emptyString evaluates as False.

And any data other than 0 evaluates to True.

Here’s how it works:

If the condition [condition] becomes “True”, then expression_1 will be evaluated, but not expression_2.

If we “and” something with 0 (zero), the result will always to be false. So in the below statement,

0 and exp

The expression exp won’t be evaluated at all since “and” with 0 will always evaluate to zero and there is no need to evaluate the expression. This is how the compiler itself works, in all languages.


1 or exp

the expression exp won’t be evaluated at all since “or” with 1 will always be 1. So it won’t bother to evaluate the expression exp since the result will be 1 anyway (compiler optimization methods).

But in case of

True and exp1 or exp2

The second expression exp2 won’t be evaluated since True and exp1 would be True when exp1 isn’t false.

Similarly in

False and exp1 or exp2

The expression exp1 won’t be evaluated since False is equivalent to writing 0 and doing “and” with 0 would be 0 itself, but after exp1 since “or” is used, it will evaluate the expression exp2 after “or”.

Note:- This kind of branching using “or” and “and” can only be used when the expression_1 doesn’t have a Truth value of False (or 0 or None or emptylist [ ] or emptystring ‘ ‘.) since if expression_1 becomes False, then the expression_2 will be evaluated because of the presence “or” between exp_1 and exp_2.

In case you still want to make it work for all the cases regardless of what exp_1 and exp_2 truth values are, do this:

[condition] and ([expression_1] or 1) or [expression_2];

Many programming languages derived from C usually have the following syntax of the ternary conditional operator:

<condition> ? <expression1> : <expression2>

At first, the Python’s benevolent dictator for life (I mean Guido van Rossum, of course) rejected it (as non-Pythonic style), since it’s quite hard to understand for people not used to C language. Also, the colon sign : already has many uses in Python. After PEP 308 was approved, Python finally received its own shortcut conditional expression (what we use now):

<expression1> if <condition> else <expression2>

So, firstly it evaluates the condition. If it returns True, expression1 will be evaluated to give the result, otherwise expression2 will be evaluated. Due to lazy evaluation mechanics – only one expression will be executed.

Here are some examples (conditions will be evaluated from left to right):

pressure = 10
print('High' if pressure < 20 else 'Critical')

# Result is 'High'

Ternary operators can be chained in series:

pressure = 5
print('Normal' if pressure < 10 else 'High' if pressure < 20 else 'Critical')

# Result is 'Normal'

The following one is the same as previous one:

pressure = 5

if pressure < 20:
    if pressure < 10:

# Result is 'Normal'

Yes, Python have a ternary operator, here is the syntax and an example code to demonstrate the same 🙂

#[On true] if [expression] else[On false]
# if the expression evaluates to true then it will pass On true otherwise On false

a = input("Enter the First Number ")
b = input("Enter the Second Number ")

print("A is Bigger") if a>b else print("B is Bigger")

Other answers correctly talk about the Python ternary operator. I would like to complement by mentioning a scenario for which the ternary operator is often used, but for which there is a better idiom. This is the scenario of using a default value.

Suppose we want to use option_value with a default value if it is not set:

run_algorithm(option_value if option_value is not None else 10)

or, if option_value is never set to a falsy value (0, "", etc.), simply

run_algorithm(option_value if option_value else 10)

However, in this case an ever better solution is simply to write

run_algorithm(option_value or 10)

The syntax for the ternary operator in Python is:

[on_true] if [expression] else [on_false]

Using that syntax, here is how we would rewrite the code above using Python’s ternary operator:

game_type = 'home'
shirt = 'white' if game_type == 'home' else 'green'

It’s still pretty clear, but much shorter. Note that the expression could be any type of expression, including a function call, that returns a value that evaluates to True or False.

Python has a ternary form for assignments; however there may be even a shorter form that people should be aware of.

It’s very common to need to assign to a variable one value or another depending on a condition.

>>> li1 = None
>>> li2 = [1, 2, 3]
>>> if li1:
...     a = li1
... else:
...     a = li2
>>> a
[1, 2, 3]

^ This is the long form for doing such assignments.

Below is the ternary form. But this isn’t the most succinct way – see the last example.

>>> a = li1 if li1 else li2
>>> a
[1, 2, 3]

With Python, you can simply use or for alternative assignments.

>>> a = li1 or li2
>>> a
[1, 2, 3]

The above works since li1 is None and the interpreter treats that as False in logic expressions. The interpreter then moves on and evaluates the second expression, which is not None and it’s not an empty list – so it gets assigned to a.

This also works with empty lists. For instance, if you want to assign a whichever list has items.

>>> li1 = []
>>> li2 = [1, 2, 3]
>>> a = li1 or li2
>>> a
[1, 2, 3]

Knowing this, you can simply such assignments whenever you encounter them. This also works with strings and other iterables. You could assign a whichever string isn’t empty.

>>> s1 = ''
>>> s2 = 'hello world'
>>> a = s1 or s2
>>> a
'hello world'

I always liked the C ternary syntax, but Python takes it a step further!

I understand that some may say this isn’t a good stylistic choice, because it relies on mechanics that aren’t immediately apparent to all developers. I personally disagree with that viewpoint. Python is a syntax-rich language with lots of idiomatic tricks that aren’t immediately apparent to the dabbler. But the more you learn and understand the mechanics of the underlying system, the more you appreciate it.

Pythonic way of doing the things:

"true" if var else "false"

But there always exists a different way of doing a ternary condition too:

"true" and var or "false"

There are multiple ways. The simplest one is to use the condition inside the “print” method.

You can use

print("Twenty" if number == 20 else "Not twenty")

Which is equivalent to:

if number == 20:
    print("Not twenty")

In this way, more than two statements are also possible to print. For example:

if number == 20:
elif number < 20:
elif 30 > number > 20:

can be written as:

print("Twenty" if number == 20 else "Lesser" if number < 20 else "Between" if 30 > number > 20 else "Greater")

The if else-if version can be written as:

sample_set="train" if "Train" in full_path else ("test" if "Test" in full_path else "validation")

Yes, it has, but it’s different from C-syntax-like programming languages (which is condition ? value_if_true : value_if_false

In Python, it goes like this: value_if_true if condition else value_if_false

Example: even_or_odd = "even" if x % 2 == 0 else "odd"

A neat way to chain multiple operators:

f = lambda x,y: 'greater' if x > y else 'less' if y > x else 'equal'

array = [(0,0),(0,1),(1,0),(1,1)]

for a in array:
  x, y = a[0], a[1]

# Output is:
#   equal,
#   less,
#   greater,
#   equal

Leave a Reply

Your email address will not be published. Required fields are marked *