Creating a Pandas DataFrame from a Numpy array: How do I specify the index column and column headers?

Posted on

Question :

Creating a Pandas DataFrame from a Numpy array: How do I specify the index column and column headers?

I have a Numpy array consisting of a list of lists, representing a two-dimensional array with row labels and column names as shown below:

data = array([['','Col1','Col2'],['Row1',1,2],['Row2',3,4]])

I’d like the resulting DataFrame to have Row1 and Row2 as index values, and Col1, Col2 as header values

I can specify the index as follows:

df = pd.DataFrame(data,index=data[:,0]),

however I am unsure how to best assign column headers.

Answer #1:

You need to specify data, index and columns to DataFrame constructor, as in:

>>> pd.DataFrame(data=data[1:,1:],    # values
...              index=data[1:,0],    # 1st column as index
...              columns=data[0,1:])  # 1st row as the column names

edit: as in the @joris comment, you may need to change above to np.int_(data[1:,1:]) to have correct data type.

Answered By: behzad.nouri

Answer #2:

Here is an easy to understand solution

import numpy as np
import pandas as pd

# Creating a 2 dimensional numpy array
>>> data = np.array([[5.8, 2.8], [6.0, 2.2]])
>>> print(data)
>>> data
array([[5.8, 2.8],
       [6. , 2.2]])

# Creating pandas dataframe from numpy array
>>> dataset = pd.DataFrame({'Column1': data[:, 0], 'Column2': data[:, 1]})
>>> print(dataset)
   Column1  Column2
0      5.8      2.8
1      6.0      2.2
Answered By: Jagannath Banerjee

Answer #3:

I agree with Joris; it seems like you should be doing this differently, like with numpy record arrays. Modifying “option 2” from this great answer, you could do it like this:

import pandas
import numpy

dtype = [('Col1','int32'), ('Col2','float32'), ('Col3','float32')]
values = numpy.zeros(20, dtype=dtype)
index = ['Row'+str(i) for i in range(1, len(values)+1)]

df = pandas.DataFrame(values, index=index)
Answered By: ryanjdillon

Answer #4:

This can be done simply by using from_records of pandas DataFrame

import numpy as np
import pandas as pd
# Creating a numpy array
x = np.arange(1,10,1).reshape(-1,1)
dataframe = pd.DataFrame.from_records(x)
Answered By: Aadil Srivastava

Answer #5:

    >>import pandas as pd
    >>import numpy as np
    ...        index=[i for i in range(data.shape[0])],
    ...        columns=['f'+str(i) for i in range(data.shape[1])])
    [![array to dataframe][1]][1]

enter image description here

Answered By: Rahul Verma

Answer #6:

Adding to @behzad.nouri ‘s answer – we can create a helper routine to handle this common scenario:

def csvDf(dat,**kwargs): 
  from numpy import array
  data = array(dat)
  if data is None or len(data)==0 or len(data[0])==0:
    return None
    return pd.DataFrame(data[1:,1:],index=data[1:,0],columns=data[0,1:],**kwargs)

Let’s try it out:

data = [['','a','b','c'],['row1','row1cola','row1colb','row1colc'],

In [61]: csvDf(data)
             a         b         c
row1  row1cola  row1colb  row1colc
row2  row2cola  row2colb  row2colc
row3  row3cola  row3colb  row3colc
Answered By: StephenBoesch

Answer #7:

I think this is a simple and intuitive method:

data = np.array([[0, 0], [0, 1] , [1, 0] , [1, 1]])
reward = np.array([1,0,1,0])

dataset = pd.DataFrame()
dataset['StateAttributes'] = data.tolist()
dataset['reward'] = reward.tolist()



enter image description here

But there are performance implications detailed here:

How to set the value of a pandas column as list

Answered By: blue-sky

Answer #8:

Here simple example to create pandas dataframe by using numpy array.

import numpy as np
import pandas as pd

# create an array 
var1  = np.arange(start=1, stop=21, step=1).reshape(-1)
var2 = np.random.rand(20,1).reshape(-1)

dataset = pd.DataFrame()
dataset['col1'] = var1
dataset['col2'] = var2
Answered By: Mehmet Kazanç

Leave a Reply

Your email address will not be published.